Custom Metal Coatings—When to Use Aluminum Thin Films

Functional metal coatings are increasingly important in research settings, enabling scientists to modulate the surface properties of different substrates to suit specific experiment parameters. Yet coated microscope slides are not a new phenomenon. Biochemists and life scientists have long exploited polymeric coatings like epoxy resin, gelatine, poly-L-lysine, and various silanes to promote better adhesion between organic samples and a substrate. Custom metal coatings are a natural progression of polymer-coated microscope slides for a more precise era of life science microscopy.

Patterning Metal Surfaces Using Shadow Masks

Surface patterning describes fabrication methods which modify substrates with extreme precision.

The need for detailed surface structures is becoming increasingly common for scientists across a range of disciplines and there are many means with which these surface patterns can be created.

In this blog, we discuss surface patterning with shadow masks, an important tool for fabricating thin film components for microelectronics in a rapid and repeatable manner.

Fundamentals of AFM & Why Metal Surfaces Matter

What can we use to probe sample surfaces beyond visible light? Electron beams are ideal for powerful magnifications many orders of magnitude greater than that of optical microscopy. But when we are dealing with resolutions of nanometre (nm) and sub-nm proportions, resolving power isn’t the final word. This is partly because researchers are spoilt for choice when it comes to molecular-scale imaging solutions.

Custom Metal Coatings from Platypus Tech

Surface science covers a multitude of chemical and physical interactions occurring at the boundary between one phase and another. Wherever a substrate is deployed, it has been engineered with some consideration for the unique dynamics occurring at its uppermost surface layers in end-use conditions. At Platypus Technologies, we provide custom metal coatings for precision surface engineering and sub-microscopic investigations.

Gold-Coated Silicon Wafers in Electrochemistry

Gold-coated surfaces play an increasingly important role in precision imaging of various biochemical phenomena. There are many unique qualities that make gold surfaces ideal for atomic-scale observations, including near-total (>99%) reflectivity in the infrared (IR) region and useful adsorption properties with bioactive implications. This has proven pivotal in various forms of IR spectroscopy, where gold-coated glass is used as a substrate for biomolecules of interest. But glass and mica are not the only substrates used for microscopy-grade gold thin films.

Gold-Coated Substrates in COVID-19 Research

Gold-coated glass is extremely valuable in high-resolution imaging applications. We talked about this at length recently, extolling the unique adsorption mechanics and infrared (IR) reflectivity of gold thin films as critical virtues for niche areas of experimentation. The key takeaway from that article was this: Provided your thin film is extremely high purity and topographically uniform at the atomic scale, your gold-coated substrate should provide a flawless surface for detailed microscopic or spectroscopic observations.

Gold-Coated Silicon Wafers: Properties & Applications

Since the 1960s, silicon technology has been revolutionizing the way we think about electronic devices and digital communications. Gold-coated silicon wafers represent another step on that exponential trajectory of innovation in semiconductor technology, combining the inherent electrical properties of silicon with the unique optical and physicochemical characteristics of gold. Provided the composite is engineered with absolute precision, gold-coated silicon wafers can be used in critical nanophotonic applications.

Gold-Coated Glass: Properties & Applications

It goes without saying that gold is an incredibly valuable material, but its value in the combined fields of microscopy and spectroscopy extend far beyond the superficial. Gold thin films deposited uniformly onto transparent glass or mica have useful optical properties, including selective reflectivity and transmissivity. Provided that gold-coated glass can be engineered with extremely precise planarity at, or approaching, the atomic range, it can be readily leveraged in a range of high-resolution imaging techniques that push conventional optical limits.

Scanning Tunneling Microscopy of Ultra-flat Gold Surfaces

New STM imaging study reveals stunning atomic-scale details on Ultra-flat Gold Surfaces.

Ultra-flat gold surfaces enable high signal-to-noise imaging for AFM and STM applications.  Because of their ultra-smooth topography, these surfaces have been used to study 2D materials, single strands of DNA, self-assembled monolayers, nano-plasmonic devices, and cell membrane monolayers.