Many life sciences applications benefit from photolithography, a method of microfabricating materials, because of its low-cost, efficient process. A substrate is covered with a photoresist and exposed to light to remove specific areas, leaving a patterned image behind. This blog post will look at why photolithography is used to pattern metal surfaces and the benefits it provides.
Author: Jessica Maloney
Photolithography is the pioneering technique used to generate functional patterns on various substrates. Precision microfabrication often occurs at scales and levels of throughput that conventional machining paradigms cannot achieve. No mechanical tools can etch microelectronics for complex devices like integrated circuits, optical components, and bio-sensors. Photolithography, meanwhile, is perfectly suited to the task.
Cell-based assays are crucial for analyzing cell health, cytotoxicity, invasion, migration, and many other biological and drug-discovery applications and cancer research. A cell invasion assay is one of many different types of assays. It measures cell movement across extracellular boundaries and how single cells respond to various chemo-attractants. This blog post will provide an overview of the critical benefits of cell invasion assays.
Lithography is a technique used to transfer a two-dimensional pattern onto a flat surface. Depending on the required outcome, many lithography methods can be used. This blog post will cover the four different types of lithography techniques and their applications.
A custom metal coating can be created from electron beam vapour deposition on different substrates. Various systems are available for metal deposition, but the highest purity custom metal coatings are achieved via e-beam deposition. An electron beam is the best way to achieve a thin film coating to protect your surfaces.
Thin films are used in a wide range of advanced applications in surface science, and studies surrounding thin films have significantly advanced solid state chemistry and physics. Surface science relates to any surfaces, interfaces and their applications and any research or development in the field. Thin films play a large part in surface science, and this blog post aims to cover how and why.
Wound healing assays measure cell migration over a two-dimensional (2D) monolayer. As cell migration takes place throughout numerous physiological processes, it has been studied in a variety of contexts from tissue injury, wound healing, cancer metastasis and more. Throughout the following post, we will explain the applications of wound healing assays and the importance of each.
Electrodes are conductors that permit a flow of electricity in and out of an object. The application range for electrodes is vast, and various different types exist for distinct purposes. The surface resistivity electrode is one of these unique formats.
Many biomedical research projects revolve around analysis of the cell. Information about cell types, cell proliferation, cell count, and cell migration is critical to advancing disease treatment and health studies. To extract this knowledge, scientists rely on various types of assays that focus on characterizing a specific property or function of target cell types. This blog post will provide a brief overview of the difference between invasion and cell migration assays, with an emphasis on cell migration assays from Platypus Technologies.
Disk electrodes are one of the essential components for performing many electrochemical experiments. Measurements such as cyclic voltammetry are widely used methods for the characterization of nearly any material or process that involves electron transfer – something ubiquitous in any material or component that will be used as part of an electronic system.
Photolithography, also known as optical lithography, is a microfabrication technique that uses light to produce precisely patterned thin films over substrates such as silicon wafers. These patterned films typically protect selected areas of the underlying substrate during subsequent processing, such as etching or metal deposition.
Surface characterization is an important process that offers an enhanced understanding of the relationships among the structural properties of materials. In the context of thin films, surface characterization can help to establish a films’ fitness for its intended applications.
Silicon chips are a type of integrated circuit that is the primary electronic component of computing devices. The chips are mainly made from silicon (as the name suggests), which is the second most abundant element on the earth. In the last few years, there has been a significant shortage of silicon chips across the world. In this article, we explain the reasons why and the effects of this shortage.
Cell culture surfaces are surfaces on which cells are grown under controlled conditions away from their natural environment. The cells under investigation are isolated from the tissue and are sustained and preserved under carefully controlled conditions.
The History of Cell Culture Surfaces
In the past century, cell culture, growth, and differentiation have moved from fringe experiments to a widely used bioproduction tool. In this time, the cell culture surfaces themselves have evolved as the research requirements adjust.
Glass coverslips are small squares that cover the specimen on the microscope slide, they flatten the specimen, enhancing the viewing and minimizing the evaporation rate of the sample. This article will discuss three types of glass coverslips and how they are used.
Silicon wafers are materials that are used for the production of semiconductors. They can be found in many types of electronic devices that are used in everyday life. Silicon wafers are super-flat disks that are refined into a mirror-like surface, they are extremely clean and free from impurities and micro-particles.
Silicon wafers are particularly well suited to use in electronic devices because electrical currents can pass through silicon conductors than many other materials. Here we will explore more about the uses of silicon wafers in electrochemistry and some of their key characteristics.
Mica minerals are a group of minerals in which the key physical characteristic is their ability to form individual crystals to be split into extremely thin elastic plates. This defining characteristic is known as perfect basal cleavage.
Cell migration is an extremely important cellular process. It is the directed movement of a group of cells or a single cell when responding to chemical and mechanical signals. This fundamental process takes place throughout life and continues until death, contributing to pathogenic states in disease. This article will outline the key steps of the process and how they work.
What is Photolithography?
Photolithography, sometimes known as optical lithography or UV lithography is a process that is used in microfabrication for surface patterning parts of a thin film or the bulk of a substrate. Photolithography uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical photoresist or simply resist on the substrate.
Electrochemistry is an area of physical chemistry that is focused on the interactions between electrical potential and chemical change. Electrochemistry includes methods and technologies such as corrosion, electrolysis, batteries, fuel cells, electroplating, and accumulators.