In the fields of semiconductor manufacturing and microfabrication, photolithography is an essential technique that creates intricate patterns on substrate surfaces. The patterning process is used frequently in electronics, microfluidics, and sensors and creates a protective layer from additional manufacturing processes and mechanical wear during its final application. To create these patterns, a mask and photoresist are applied to the substrate and exposed to light. After exposure, the photoresist is developed using a chemical solution, and the unexposed sections of the photoresist are dissolved, resulting in the desired pattern.
Author: Jessica Maloney
Hexamethyldisilazane (HMDS) is a colorless, flammable liquid with a unique chemical structure. It is frequently used in surface science as a primer agent to treat the surfaces of silicon wafers and make them more suitable for adhesion with a photoresist. Using HMDS is also common as a pre- and post-treatment method for surface coating applications. In this blog post, we will look at how HMDS is used in surface science and the benefits of doing so.
Microfluidics has emerged as a powerful tool in recent years, specifically in the fields of biotechnology, chemistry, and materials science. It involves the careful control of tiny volumes of fluid, typically just a few picoliters, within nanoscale channels. Though small scale, the potential applications of microfluidic devices are vast. However – as with most micro- and nanoscale fabrications – engineering microfluidic devices can be a challenging prospect.
Microfluidic devices are becoming more popular because of their ability to precisely manipulate small quantities of fluids through narrow channels, which is beneficial in a range of applications and scientific fields, including biology, chemistry, and medicine. Most microfluidic devices rely on standard photolithography as a microfabrication technique to pattern substrates and process photoresists for the electronics industry. However, soft lithography is a complementary addition to photolithography that can process various materials, such as gels and polymers.
SU-8 photolithography is a widely used microfabrication technique that uses a photosensitive negative epoxy called SU-8. The SU-8 is used to create micro and nanoscale patterns on a substrate’s surface, microstructures, and coatings for various applications. It is a popular choice because of its stable chemical, mechanical and thermal characteristics. SU-8 photolithography plays an important role in manufacturing microfluidics and microelectromechanical system components. This blog post will look at the procedure, applications, and instruments used for SU-8 photolithography.
Metal coatings are used across various industries and applications to improve the properties and performance of a substrate. Adding a metal coating can enhance a material’s appearance and resistance properties, among other characteristics, making it suitable for various applications, such as electronics, medical implants, and transportation components.
Silicon wafers are widely used in modern technology, serving mainly as the substrate for microelectronic circuits. In fact, it is extremely rare to find electronic devices that don’t contain some form of silicon-based substrate. The reason for this ubiquity is the unique semiconducting properties of silicon–but an electro-ceramic substrate is not the final word in integrated circuits. Metal surfaces also play a crucial role in semiconductor devices.
Many life sciences applications benefit from photolithography, a method of microfabricating materials, because of its low-cost, efficient process. A substrate is covered with a photoresist and exposed to light to remove specific areas, leaving a patterned image behind. This blog post will look at why photolithography is used to pattern metal surfaces and the benefits it provides.
Photolithography is the pioneering technique used to generate functional patterns on various substrates. Precision microfabrication often occurs at scales and levels of throughput that conventional machining paradigms cannot achieve. No mechanical tools can etch microelectronics for complex devices like integrated circuits, optical components, and bio-sensors. Photolithography, meanwhile, is perfectly suited to the task.
Cell-based assays are crucial for analyzing cell health, cytotoxicity, invasion, migration, and many other biological and drug-discovery applications and cancer research. A cell invasion assay is one of many different types of assays. It measures cell movement across extracellular boundaries and how single cells respond to various chemo-attractants. This blog post will provide an overview of the critical benefits of cell invasion assays.
Lithography is a technique used to transfer a two-dimensional pattern onto a flat surface. Depending on the required outcome, many lithography methods can be used. This blog post will cover the four different types of lithography techniques and their applications.
A custom metal coating can be created from electron beam vapour deposition on different substrates. Various systems are available for metal deposition, but the highest purity custom metal coatings are achieved via e-beam deposition. An electron beam is the best way to achieve a thin film coating to protect your surfaces.
Thin films are used in a wide range of advanced applications in surface science, and studies surrounding thin films have significantly advanced solid state chemistry and physics. Surface science relates to any surfaces, interfaces and their applications and any research or development in the field. Thin films play a large part in surface science, and this blog post aims to cover how and why.
Wound healing assays measure cell migration over a two-dimensional (2D) monolayer. As cell migration takes place throughout numerous physiological processes, it has been studied in a variety of contexts from tissue injury, wound healing, cancer metastasis and more. Throughout the following post, we will explain the applications of wound healing assays and the importance of each.
Electrodes are conductors that permit a flow of electricity in and out of an object. The application range for electrodes is vast, and various different types exist for distinct purposes. The surface resistivity electrode is one of these unique formats.
Many biomedical research projects revolve around analysis of the cell. Information about cell types, cell proliferation, cell count, and cell migration is critical to advancing disease treatment and health studies. To extract this knowledge, scientists rely on various types of assays that focus on characterizing a specific property or function of target cell types. This blog post will provide a brief overview of the difference between invasion and cell migration assays, with an emphasis on cell migration assays from Platypus Technologies.
Disk electrodes are one of the essential components for performing many electrochemical experiments. Measurements such as cyclic voltammetry are widely used methods for the characterization of nearly any material or process that involves electron transfer – something ubiquitous in any material or component that will be used as part of an electronic system.
Photolithography, also known as optical lithography, is a microfabrication technique that uses light to produce precisely patterned thin films over substrates such as silicon wafers. These patterned films typically protect selected areas of the underlying substrate during subsequent processing, such as etching or metal deposition.
Surface characterization is an important process that offers an enhanced understanding of the relationships among the structural properties of materials. In the context of thin films, surface characterization can help to establish a films’ fitness for its intended applications.
Silicon chips are a type of integrated circuit that is the primary electronic component of computing devices. The chips are mainly made from silicon (as the name suggests), which is the second most abundant element on the earth. In the last few years, there has been a significant shortage of silicon chips across the world. In this article, we explain the reasons why and the effects of this shortage.