Thin films are used in a wide range of advanced applications in surface science, and studies surrounding thin films have significantly advanced solid state chemistry and physics. Surface science relates to any surfaces, interfaces and their applications and any research or development in the field. Thin films play a large part in surface science, and this blog post aims to cover how and why.
Reactive gas molecules form what is known as plasma. The ions and electrons in plasma are used to remove unwanted organic contaminants. Unwanted particles are removed through a vacuum system. This cleaning procedure creates an ideal sterilization process. In addition, plasma cleaning eliminates the need for expensive solvents since substrate surfaces can be cleaned via a chemical reaction within plasma molecules.
Wound healing assays measure cell migration over a two-dimensional (2D) monolayer. As cell migration takes place throughout numerous physiological processes, it has been studied in a variety of contexts from tissue injury, wound healing, cancer metastasis and more. Throughout the following post, we will explain the applications of wound healing assays and the importance of each.
Ultra-flat gold films by Platypus Technologies are created via electron-beam metal deposition under ultra-high vacuum conditions. Our gold films have a uniform orientation (Au(111)), high purity, and low surface roughness.
Electrodes are conductors that permit a flow of electricity in and out of an object. The application range for electrodes is vast, and various different types exist for distinct purposes. The surface resistivity electrode is one of these unique formats.
Platypus Technologies offers electron beam metal deposition services and expertise equip with handling custom projects. Our operations prioritize metal purity and smoothness. In order to create high quality metal coatings, each step involved in the process is carefully executed.
Many biomedical research projects revolve around analysis of the cell. Information about cell types, cell proliferation, cell count, and cell migration is critical to advancing disease treatment and health studies. To extract this knowledge, scientists rely on various types of assays that focus on characterizing a specific property or function of target cell types. This blog post will provide a brief overview of the difference between invasion and cell migration assays, with an emphasis on cell migration assays from Platypus Technologies.
Disk electrodes are one of the essential components for performing many electrochemical experiments. Measurements such as cyclic voltammetry are widely used methods for the characterization of nearly any material or process that involves electron transfer – something ubiquitous in any material or component that will be used as part of an electronic system.
Photolithography, also known as optical lithography, is a microfabrication technique that uses light to produce precisely patterned thin films over substrates such as silicon wafers. These patterned films typically protect selected areas of the underlying substrate during subsequent processing, such as etching or metal deposition.
Automation and Robotics Allow for Higher Precision in Industrial Fluid Dispensing Applications
Precision fluid dispensing systems are utilized in a range of advanced manufacturing applications. At Platypus Technologies, we employ advanced fluid dispensing technology in our biosensor and bioassay fabrication processes, as well as in our conformal coating solutions.
Surface characterization is an important process that offers an enhanced understanding of the relationships among the structural properties of materials. In the context of thin films, surface characterization can help to establish a films’ fitness for its intended applications.
Photolithography is a fabrication process used in the production of patterned thin films for precision applications such as microelectronics, biosensors, and custom patterned electrodes. The process utilizes ultraviolet (UV) light to expose a minutely detailed pattern within a light-sensitive photoresist coating.
The coating is deposited on a substrate material and a mask is placed atop the photoresist. UV light therefore interacts only with the areas of the photoresist that are left exposed underneath the mask. Once the mask is removed, a precise geometric pattern remains on the substrate surface, formed via exposure to the UV light.
Silicon chips are a type of integrated circuit that is the primary electronic component of computing devices. The chips are mainly made from silicon (as the name suggests), which is the second most abundant element on the earth. In the last few years, there has been a significant shortage of silicon chips across the world. In this article, we explain the reasons why and the effects of this shortage.
Cell culture surfaces are surfaces on which cells are grown under controlled conditions away from their natural environment. The cells under investigation are isolated from the tissue and are sustained and preserved under carefully controlled conditions.
The History of Cell Culture Surfaces
In the past century, cell culture, growth, and differentiation have moved from fringe experiments to a widely used bioproduction tool. In this time, the cell culture surfaces themselves have evolved as the research requirements adjust.
How Thin Film Deposition Works – Its Advantages and Applications
Thin metal film deposition is a unique fabrication process commonly used in the manufacturing of semiconductors, biosensors, and other specialized photolithography applications.
The process involves carefully depositing thin metallic film coating onto a substrate in order to yield specific material properties. For example, specially engineered thin film coatings are used in the fields of optics and imaging to modify the optical properties of glass. In more advanced biomedical and semiconductor applications, thin film deposition is used to create specific molecular properties in the conducting material, further paving the way for highly customizable chip manufacturing.
Glass coverslips are small squares that cover the specimen on the microscope slide, they flatten the specimen, enhancing the viewing and minimizing the evaporation rate of the sample. This article will discuss three types of glass coverslips and how they are used.
Cutting-Edge Engineering Developments in the Biosensor Polymer Manufacturing Industry
Recently, a novel organic semiconducting material was engineered which has the potential to push next-generation biosensor development to new heights. This innovative new carbon-based semiconductor polymer was specifically developed to surpass current biosensor options in sensing performance, reliability, as well as overall biocompatibility.
Silicon wafers are materials that are used for the production of semiconductors. They can be found in many types of electronic devices that are used in everyday life. Silicon wafers are super-flat disks that are refined into a mirror-like surface, they are extremely clean and free from impurities and micro-particles.
Silicon wafers are particularly well suited to use in electronic devices because electrical currents can pass through silicon conductors than many other materials. Here we will explore more about the uses of silicon wafers in electrochemistry and some of their key characteristics.
Biosensors are the core component of many cutting-edge technological initiatives – from state-of-the-art healthcare devices to the agricultural and industrial manufacturing sectors.
Mica minerals are a group of minerals in which the key physical characteristic is their ability to form individual crystals to be split into extremely thin elastic plates. This defining characteristic is known as perfect basal cleavage.