Silicon wafers are widely used in modern technology, serving mainly as the substrate for microelectronic circuits. In fact, it is extremely rare to find electronic devices that don’t contain some form of silicon-based substrate. The reason for this ubiquity is the unique semiconducting properties of silicon–but an electro-ceramic substrate is not the final word in integrated circuits. Metal surfaces also play a crucial role in semiconductor devices.
Category: Metal Coatings
New research published in the Journal of the American Chemical Society, led by Professor Fernando Garzon of the University of New Mexico, demonstrates a novel strategy to improve sensors for water contaminants. The new approach involves using a thin films of highly oriented gold Au(111) on an electrode to enable redesign of the sensing surface and enhance its sensitivity.
In semiconductor fabrication, stencil metal plates or shadow masks can be used to designate where a metal is deposited upon a substrate. The stencil serves as a medium for achieving custom designs onto a substrate without the need for photolithography processes. This works by masking certain areas of a substrate while exposing others to be deposited with metal. Â
You might be thinking a cleanroom refers to an organized and tidy space. However, a certified cleanroom is much more than that. A cleanroom is a space for conducting operations that are sensitive the particle contamination, such as semiconductor fabrication. Enviornmental factors are altered in order to provide a controlled clean atmosphere. Airborne particles are filtered out while temperature, humidity, and air flow are regulated.
A custom metal coating can be created from electron beam vapour deposition on different substrates. Various systems are available for metal deposition, but the highest purity custom metal coatings are achieved via e-beam deposition. An electron beam is the best way to achieve a thin film coating to protect your surfaces.
As more advancements are made in the electronics industry, thin-film metal coatings remain in high demand. The team at Platypus Technologies has done custom work with a range of companies, from completing small R&D projects to creating continual partnerships. Our credibility has been built based on our internal expertise, high-quality metal deposition, and attention to detail.
Thin films are used in a wide range of advanced applications in surface science, and studies surrounding thin films have significantly advanced solid state chemistry and physics. Surface science relates to any surfaces, interfaces and their applications and any research or development in the field. Thin films play a large part in surface science, and this blog post aims to cover how and why.
Platypus Technologies offers electron beam metal deposition services and expertise equip with handling custom projects. Our operations prioritize metal purity and smoothness. In order to create high quality metal coatings, each step involved in the process is carefully executed.
How Thin Film Deposition Works – Its Advantages and Applications
Thin metal film deposition is a unique fabrication process commonly used in the manufacturing of semiconductors, biosensors, and other specialized photolithography applications.
The process involves carefully depositing thin metallic film coating onto a substrate in order to yield specific material properties. For example, specially engineered thin film coatings are used in the fields of optics and imaging to modify the optical properties of glass. In more advanced biomedical and semiconductor applications, thin film deposition is used to create specific molecular properties in the conducting material, further paving the way for highly customizable chip manufacturing.
Micro-patterning is commonly done through masking. Creating a photomask involves important specifications that can directly affect a resulting pattern transfer. Mask material, environmental conditions, and type of resist should be considered. But prior to processing, photomask design characteristics must be determined.
A research study from Iowa State University explored the potential of using directional Raman scattering spectroscopy to characterize self-assembled monolayers (SAMs) deposited on gold (Au) and silver (Ag) surfaces. SAMs are formed by absorption of organic thiols (R-SH) on metal surfaces and are used in microelectronic applications requiring precise surface patterning of metal films.
Functional metal coatings are increasingly important in research settings, enabling scientists to modulate the surface properties of different substrates to suit specific experiment parameters. Yet coated microscope slides are not a new phenomenon. Biochemists and life scientists have long exploited polymeric coatings like epoxy resin, gelatine, poly-L-lysine, and various silanes to promote better adhesion between organic samples and a substrate. Custom metal coatings are a natural progression of polymer-coated microscope slides for a more precise era of life science microscopy.
Surface patterning describes fabrication methods which modify substrates with extreme precision.
The need for detailed surface structures is becoming increasingly common for scientists across a range of disciplines and there are many means with which these surface patterns can be created.
In this blog, we discuss surface patterning with shadow masks, an important tool for fabricating thin film components for microelectronics in a rapid and repeatable manner.
One of the main problems in microscopy is the movement of the specimen from beam irradiation during imaging which can lead to low-resolution images which are blurred. Carbon films on metal grids can cause this specimen drift. Using gold thin films instead of carbon can stop the drift as they are chemically inert and biocompatible, less fragile, extremely conductive and non-oxidizing. Gold thin metal films are often seen as the most significant signal amplification components in electrochemical and optical sensor applications. In surface plasmon resonance (SPR) applications, gold thin metal film has electron densities which have the plasmon frequencies in the visible light range.
Nanostructured thin films have been instrumental in pushing the boundaries of modern electronics and technology. They form one of the cornerstones of key devices in virtually any market that comes to mind, from consumer electronics to ultra-resolution microscopy.
Surface science covers a multitude of chemical and physical interactions occurring at the boundary between one phase and another. Wherever a substrate is deployed, it has been engineered with some consideration for the unique dynamics occurring at its uppermost surface layers in end-use conditions. At Platypus Technologies, we provide custom metal coatings for precision surface engineering and sub-microscopic investigations.
Gold-coated surfaces play an increasingly important role in precision imaging of various biochemical phenomena. There are many unique qualities that make gold surfaces ideal for atomic-scale observations, including near-total (>99%) reflectivity in the infrared (IR) region and useful adsorption properties with bioactive implications. This has proven pivotal in various forms of IR spectroscopy, where gold-coated glass is used as a substrate for biomolecules of interest. But glass and mica are not the only substrates used for microscopy-grade gold thin films.
Platypus Technologies currently offers coatings of gold, silver, and platinum and now we are launching a new product: Copper coatings.
Gold-coated glass is extremely valuable in high-resolution imaging applications. We talked about this at length recently, extolling the unique adsorption mechanics and infrared (IR) reflectivity of gold thin films as critical virtues for niche areas of experimentation. The key takeaway from that article was this: Provided your thin film is extremely high purity and topographically uniform at the atomic scale, your gold-coated substrate should provide a flawless surface for detailed microscopic or spectroscopic observations.
Since the 1960s, silicon technology has been revolutionizing the way we think about electronic devices and digital communications. Gold-coated silicon wafers represent another step on that exponential trajectory of innovation in semiconductor technology, combining the inherent electrical properties of silicon with the unique optical and physicochemical characteristics of gold. Provided the composite is engineered with absolute precision, gold-coated silicon wafers can be used in critical nanophotonic applications.