What is the Difference Between Invasion and Cell Migration Assays?

Many biomedical research projects revolve around analysis of the cell. Information about cell types, cell proliferation, cell count, and cell migration is critical to advancing disease treatment and health studies. To extract this knowledge, scientists rely on various types of assays that focus on characterizing a specific property or function of target cell types. This blog post will provide a brief overview of the difference between invasion and cell migration assays, with an emphasis on cell migration assays from Platypus Technologies.

What is a Disk Electrode Used For?

Disk electrodes are one of the essential components for performing many electrochemical experiments. Measurements such as cyclic voltammetry are widely used methods for the characterization of nearly any material or process that involves electron transfer – something ubiquitous in any material or component that will be used as part of an electronic system.

Advantages and Disadvantages of Photolithography

Photolithography, also known as optical lithography, is a microfabrication technique that uses light to produce precisely patterned thin films over substrates such as silicon wafers. These patterned films typically protect selected areas of the underlying substrate during subsequent processing, such as etching or metal deposition.

Advancements in Precision Fluid Dispensing System Technology

Automation and Robotics Allow for Higher Precision in Industrial Fluid Dispensing Applications

Precision fluid dispensing systems are utilized in a range of advanced manufacturing applications. At Platypus Technologies, we employ advanced fluid dispensing technology in our biosensor and bioassay fabrication processes, as well as in our conformal coating solutions.

An Overview of the Photolithography Process

Photolithography is a fabrication process used in the production of patterned thin films for precision applications such as microelectronics, biosensors, and custom patterned electrodes. The process utilizes ultraviolet (UV) light to expose a minutely detailed pattern within a light-sensitive photoresist coating.

The coating is deposited on a substrate material and a mask is placed atop the photoresist. UV light therefore interacts only with the areas of the photoresist that are left exposed underneath the mask. Once the mask is removed, a precise geometric pattern remains on the substrate surface, formed via exposure to the UV light.

Why Is There a Shortage of Silicon Chips?

Silicon chips are a type of integrated circuit that is the primary electronic component of computing devices. The chips are mainly made from silicon (as the name suggests), which is the second most abundant element on the earth. In the last few years, there has been a significant shortage of silicon chips across the world. In this article, we explain the reasons why and the effects of this shortage.

The Evolution of Cell Culture Surfaces

Cell culture surfaces are surfaces on which cells are grown under controlled conditions away from their natural environment. The cells under investigation are isolated from the tissue and are sustained and preserved under carefully controlled conditions. 

The History of Cell Culture Surfaces

In the past century, cell culture, growth, and differentiation have moved from fringe experiments to a widely used bioproduction tool. In this time, the cell culture surfaces themselves have evolved as the research requirements adjust. 

What Is the Thin Metal Film Deposition Process?

How Thin Film Deposition Works – Its Advantages and Applications

Thin metal film deposition is a unique fabrication process commonly used in the manufacturing of semiconductors, biosensors, and other specialized photolithography applications.

The process involves carefully depositing thin metallic film coating onto a substrate in order to yield specific material properties. For example, specially engineered thin film coatings are used in the fields of optics and imaging to modify the optical properties of glass. In more advanced biomedical and semiconductor applications, thin film deposition is used to create specific molecular properties in the conducting material, further paving the way for highly customizable chip manufacturing.

Gold Puzzle

Building a Better Biosensor Polymer with Organic Semiconducting Materials

Cutting-Edge Engineering Developments in the Biosensor Polymer Manufacturing Industry

Recently, a novel organic semiconducting material was engineered which has the potential to push next-generation biosensor development to new heights. This innovative new carbon-based semiconductor polymer was specifically developed to surpass current biosensor options in sensing performance, reliability, as well as overall biocompatibility.

How are Silicon Wafers Used in Electrochemistry

Silicon wafers are materials that are used for the production of semiconductors. They can be found in many types of electronic devices that are used in everyday life. Silicon wafers are super-flat disks that are refined into a mirror-like surface, they are extremely clean and free from impurities and micro-particles.

Silicon wafers are particularly well suited to use in electronic devices because electrical currents can pass through silicon conductors than many other materials. Here we will explore more about the uses of silicon wafers in electrochemistry and some of their key characteristics.

What are the Steps in Cell Migration

Cell migration is an extremely important cellular process. It is the directed movement of a group of cells or a single cell when responding to chemical and mechanical signals. This fundamental process takes place throughout life and continues until death, contributing to pathogenic states in disease. This article will outline the key steps of the process and how they work.

Using Photolithography for Surface Patterning

What is Photolithography?

Photolithography, sometimes known as optical lithography or UV lithography is a process that is used in microfabrication for surface patterning parts of a thin film or the bulk of a substrate. Photolithography uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical photoresist or simply resist on the substrate.